四、更新策略
互联网是实时变化的,具有很强的动态性。网页更新策略主要是决定何时更新之前已经下载过的页面。常见的更新策略有以下三种:
1.历史参考策略
顾名思义,根据页面以往的历史更新数据,预测该页面未来何时会发生变化。一般来说,是通过泊松过程进行建模进行预测。
2.用户体验策略
尽管搜索引擎针对于某个查询条件能够返回数量巨大的结果,但是用户往往只关注前几页结果。因此,抓取系统可以优先更新那些现实在查询结果前几页中的网页,而后再更新那些后面的网页。这种更新策略也是需要用到历史信息的。用户体验策略保留网页的多个历史版本,并且根据过去每次内容变化对搜索质量的影响,得出一个平均值,用这个值作为决定何时重新抓取的依据。
3.聚类抽样策略
前面提到的两种更新策略都有一个前提:需要网页的历史信息。这样就存在两个问题:第一,系统要是为每个系统保存多个版本的历史信息,无疑增加了很多的系统负担;第二,要是新的网页完全没有历史信息,就无法确定更新策略。
这种策略认为,网页具有很多属性,类似属性的网页,可以认为其更新频率也是类似的。要计算某一个类别网页的更新频率,只需要对这一类网页抽样,以他们的更新周期作为整个类别的更新周期。基本思路如图:
五、分布式抓取系统结构
一般来说,抓取系统需要面对的是整个互联网上数以亿计的网页。单个抓取程序不可能完成这样的任务。往往需要多个抓取程序一起来处理。一般来说抓取系统往往是一个分布式的三层结构。如图所示:
最下一层是分布在不同地理位置的数据中心,在每个数据中心里有若干台抓取服务器,而每台抓取服务器上可能部署了若干套爬虫程序。这就构成了一个基本的分布式抓取系统。